e R T

2w
an

L

Il

ILzs flis ye

a——

I!///. Nl s
u .
T

l"

Implementation Techmiques
for

Main Memory Database Systems

by

A .
JJHHLEIT

David J. DeWitt, Randy H. Katz,

= Frank Olken, Leonard D. Shapiro,
== Michael R. Stonebraker and David Wood

m
1

i

1’1'

(N

.|‘;
H1iiiH

il
i

Memorandum No. UCB/ERL 84/5
23 January 1984

i
R

4/

200000000000000 808 800 8000

Al

i

i

R

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley, CA 94720

SECUR'TY CLASSIH CATIUN OF Ten§ PAGE

REPORT DOCUMENTATION PAGE

15 REPORT SEC.RITY DLASSIF CATION 1b RESTR.CTIVE MARKINGS
UNCLASSTELED
28 SECLRAITY CLASSIFICATION ALTHRORITY 3 DISTRIBUTION AVAILABILITY OF REPQRT

APPROVED FoR PUBLIC RELEASE;
DISTRIBUTLON UNLIMITED

20 OECLASS/FICATION DOWNGRADING SCHEDULE

4 PERFCRMING ORGANIZATION REPORT NUMBEFRIS) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

'C3 ERL 84/5 AFOSR~’"R - D ;8

6a NAME OF PERFORMING ORGANIZATION |60 OFFICE SYMBOL | 7a NAME OF MONITORING ORGANIZATION
tif applicable)
Electronivs Research Lab. AFOSR/NM
6c ADDRESS ((ity State and ZIP Code) 7o. ADDRESS (City. State and ZIP Code:
College of Engineerin Sy as
. ge & : 5 Building 410
Uaiversity of California) s N
. - Bolling AFB, DU 20332
Berkeley, CA 94720
8a. NAME OF FUNDING/SPONSORING Bb OFFICE SYMBOL |9 PROCUREMENT INSTRUMENT IOENTIE(CATION NYMBER
ORGANIZATION 11 applicable, . [57
AFOSR NM s / [-
i -
8c ADDRESS «City, State and ZIP Code: 10 SOURCE OF FUNDING NOS
. . T
Building 410 PROGRAM 1 PROJECT "asK T Ncak uniT
N . " “ . T
Bolling AFB, DC 20332 ELEMENT NO ﬂ No No : No
: ——
61102F | —a - ———
11 TITLE ‘Include Security Classification; ! - '
IMPLEMENTATION TECHNIQUES FOR MAIN MEMORY HQATABASE SYST#NS\f'f: 7/i PR I
4 - & i .
Thin e gam s

12. PERASONAL AUTHORIS) ’
DAVID 7. DEWITT, RANDY H. KATZ, FRANK OLKAEN, LEONARD D. SHAPIRO, MICHAEL R. ST NERRAKER

13e. TYPE OF REPORT 13b. TIME COVERED 14 DATE QF REPORT :Yr Mo . Days 15 PAGE CCUNT
INTERIM FROM TO 23 Jan B84 25

18 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse (f necessars and identify by block number

FIELD GROUP Sus GAR Main Memory Databases, Access Methods, Join algorithms,

Access Planning, Recovery Mechanisms

19. ABSTRACT Continue on reverse ([necessary and identify by biock number,

With the availability of very large, relatively inexpensive main memories, it i
becoming possible to keep large databases resident in main memory. In this paper we
.onsider the changes necessary to permit a relational database svstem to take advantage
of large amounts of main memoryv. We evaluate AVL vs. Bs— tree access methods tor mais
memorv databases, hash-based query processing strategies vs. sort-merge. and study
recovery issues when most or all of the database tits in main memory. As cxpected, Be-
trees are the preferred storage mechanism unless more than 80-90% of the database fits
in main memorv. A somewhat surprising result is that hash based query provessing
strategies are advantageous for large memory situatiuns

20 DISTRIBUTION/AVAILABILITY OF A8STRACT 2t ABSTRACT SECURAITY CLAss|F|cAT|oNL‘
UNCLASSIFIED/UNLIMITED ¥ SAME aS APT X, oTic users UNCLASSIFIED
224 NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22¢ OFF%ABOL
. i rinctude Area Tode,
CAPT. THOMAS (202) 767-5027 NM
0D T
FORM 1473, 83 APR EDITION OF 1 JAN 73 1S OBSOLETE UNCLASSTELED

b 6 6 6 o 8 3 SECURITY CLASSIFICATION OF THIS PAGE

I

Implementation Techniques
for
Main Memory Database Systems

David J. DeWitt!
Randy H. Katz“
Frank Olken
Leonard D. Shapiro
Michael R. Stonebraker”
David Wood”

1 Computer Sciences Department, University of Wisconsin
EECS Department, University of California at Berkeley
3 CSAM Department, Lawrence Berkeley Laboratory
Department of Computer Science, North Dakota State University

This research was partially supported by the National Science Foundation under grants MCS82-01860,
MCS82-01870, by the Department of Energy under contracts #DE-AC02-81ER10920 and #W-7405
ENG-48, and by the Air Force Office of Scientific Research under Grant 830021~ ;33 1 ~ $. . 4.

«

-

ABSTRACT

With the availability of very large, relatively inexpensive main memories, it is becoming possi-
ble keep large databases resident in main memory. In this paper we consider the changes necessary to
permit a relational database system to take advantage of large amounts of main memory. We evaluate
AVL vs. B+ -tree access methods for main memory databases, hash-based query processing strategies vs.
sort~merge, and study recovery issues when most or all of the database fits in main memory. As expected,
B+ -trees are the preferred storage mechanism unless more thaa 80-90% of the database fits in main
memory. A somewhat surprising result is that bash based query processing strategies are advantageous
for large memory situations.

Key Words and Phrases: Main Memory Databases, Access Methods, Join Algorithms, Access Planning,
Recovery Mechanisms

1. Introduction

Throughout the past decade main memory prices have plummetted and are expected to cosn-
tinue to do so. At the present time, memory for super-minicomputers such as the VAX 11/780 costs
approximately $1,500 a megabyte. By 1990, 1 megabit memory chips will be commonplace and should
further reduce prices by another order of magnitude. Thus, in 1990 a gigabyte of memory should cost less
than $200,000. If 4 megabit memory chips are available, the price might be as low as $50,000.

With the availability of larger amounts of main memory, it becomes possible to contemplate
the storage of databases as main memory objects. In fact, IMS Fast Path [DATES2| has supported such
databases for some time. In this paper we consider the changes that might be needed to a relational data-
base system if most (or all) of a relation(s) is (are) resident in main memory.

In Sectiom 2, the performance of alternative access methods for main memory database sys-
tems are considered. Algorithms for relational database operators in this environment are presented and
evaluated in Section 3. I[n Section 4, we describe how access planning will be affected by the availability
of large amounts of main memory for query processing. Section 5 discusses recovery in memory resident

databases. Our conclusions and suggestions for future research are contained in Section 6.

2. Access Methods for Memory Resident Databases

The standard access method for data on disk is the B+ -tree [COMET9], providing both ran-
domn and sequential key access. A B+ -tree is specially designed to provide fast access to disk-resident
data and makes fundamental use of the page size of the device. On the other hand, if a keyed relation is
known to reside in main memory, then an AVL (or other binary) tree organization may be a better choice.
In this section we analyze the performaace of both structure for a relation R with the following charac-

teristics:

R|| naumber of tuples in relation R
width of the key for R in bytes
width of a tuple in bytes

page size in bytes

size of a pointer in bytes

Lola N w9

We have analyzed two cases of interest. The first is the cost of retrieving a single tuple using a

random key value. An example of this type of query is:

retrieve (emp.salary) where emp.name = " Jones”
The second case analyzed is the cost of reading N records sequentially. Consider the query
retrieve (emp.salary, emp.name) where emp.pame = ™ Js”
which requests data on all employees whose names begin with J. To execute this query, the database sys-
tem would locate the first employee with a name beginning with J and then read sequentially. This
second case analyzes the sequential access portion of such a command.
For both cases (random and sequential access), there are two costs that are specific to the

access method:

|page reads| the number of pages read to execute the query

|comparisons{ the number of record comparisons required to
isolate the particular data of interest.

The number of comparisons is ipdicative of the CPU time required to process the command while the
number of page reads approximates the I/O costs.

To compare the performance AVL and B+ -trees, we propose the following cost function:

cost = 7 * |page-reads| + |comparisoas|
Since a page read consumes perhaps 2000 instructions of operating system overhead and 30 milliseconds of
elapsed time while a comparison can easily be done in 200, we expect realistic values of Z to be in the
rauge of 10 to 30. Later in the section we will use several values in this range.

Moreover, 1t is possible (although not very likely) that an AVL-tree comparison will be cheaper
than a B+ -tree comparison. The reasoning is that the B+ -tree record must be located within a page
while ap AVL tree does not contain any page structure and records can be directly located. Conse-
quently, we assume that an AVL-tree comparison costs Y times a B+ -tree comparison for some Y < 1.

From Kauth [KNUT73|, we can observe that in an ||R||-tuple AVL tree approximately

C = log,)|R|| + 0.25 comparisons

are required to find a tuple in a relation. Without any special precautions each of the C aodes to be

inspected will be on a different page.' Hence, the number of pages accessed is approximately C. The

1 If a paged binary tree organisation 18 used instead, the fanout per node will be slightly worse than the B-tree Furthermore,

AVL structure will occupy approximately

S = [ﬂ—ll————-“ HL+8]pages

P

Here [X | denotes the smallest integer larger than X. If M| pages of main memory are available, and if
|M| < { S|, and if a random replacement algorithm is used, the number of page faults to find a tuple in

a relation will be approximately:

JSoults = C * (l—-l%l-)

Consequently the cost of a random access by key is:
cost(AVL) = Z*C'(l--i-[;ﬂ—) + Y=C

Next we derive the approximate cost for a random access to a tuple using a B+ -tree. Accord-
ing to YAO [YAO78]|, B-tree nodes are approximately 69 percent f{ull on the average. Hence, the fanout of

a B+ -tree is approximately

69 +P

A= K+4

The number of leaf nodes will be about

D= -I-Lgu-:—:— data pages

The height of a B+ -tree index is thereby

The oumber of comparisons required to locate a tuple with a particular valye is:
¢ = fosalfll]

The number of pages which the tree consumes is about

ool BRI

To a first approximation S’ is

A

S'=1D
‘A

Again the number of page faults is approximately

naged binary trees are not balanced and the worst case access time may be sifnificantly poorer than in the case of a B-tree

Jouits = (height+ 1) * (1-.%‘}1['.)
As a result the cost of a B+ -tree access by key is:
cost(B+ —tree) = Z¢{height+ 1)#(1 - JS—W,L)-O- c'
An AVL-Tree will be the preferred structure for case 1 if
DIFF = cost(B+ -tree} - cost{AVL-Tree) > 0
If we assume that C = C ' = log,||.”|| and rearrange the terms in the inequality, then an AVL-Tree will
be preferred if:
(1-Y) sloggl| R) > z:nogzjmnm-i%l-) _ Ze(height + 1):(1_-l§—",|-)

height + 1
logg|| R||

M > Ze(1-H)+ r-1 | 1-H
s z 1.45

Note that if L > > 8 then $ == 0.69 ¢S’ Define f = . Some simplification yields:

Obviously, if | M| >S5, then AVL trees are the preferred structure regardless of the values of H, Y, and Z.
[o this situation. the entire AVL-Tree is resident in main memory and there are no disk accesses. Since
both data structures require the same aumber of comparisons and the AVL comparisons are cheapers,

then the AVL-Tree is guaranteed to have lower cost. If | M| < S then AVL trees will be preferred if the
I M) . . .
valye of 5 larger than the value of min({M|/S) shown as in Table 1. As can be seen, essentially all

of a relation has to be resident in main memory before an AVL tree is the preferred structure. For rea

Table 1 -~ Minimum Residency Factor For Random Access

Z Y H min (|M}]/S)
10 .5 1 91
10 .5 2 87
105 3 82
10 75 1 .94
10 .75 .2 .90
100 75 3 .86
15 .75 1 96
15 7% 2 91
15 .76 3 .86

[S

sonable values of H, Y and Z, at least 80 percent and sometimes more than 90 percent of a relation must

be main memory resident.

We turn now to sequential access. For an AVL-Tree, the cost of reading N records sequen-
tially is N comparisons and N page reads, ie.:

seq-cost{AVL) = Y*N + N*Z*(I—Ji‘;—l-)

On the other hand, N records in a B+ -Tree will occupy

0= [MU_SS_P,L] dats pages

L /(.69+P)
and consequently:

seq—cost(B+ -Tree) = N + QtZt(l*-]S—M,-L)

An AVL-Tree will be preferred if:

|M| | Z0-H 'Y+ (Y1)
S 7 Z*(1-H '[1.43)

where H ' = % it appears that reasonable values for H' are similar to reasonable values for H; hence,

Table 1 also applies to sequential access.
In both random and sequential access, a very high percentage of the tree must be in main
memory for an AVL-Tree to be competitive. Hence, it is likely to be a structure of limited general utility

and B+ -Trees will continue to remain the dominant access method for database management systems.
3. Algorithms for Relational Database Operations

3.1. Introduction
ln this section we explore the performance of alternative algorithms for relational database
operations in an epvironment with very large amounts of main memory. Since many of the techniques
used for executing the relational join operator can also be used for other relational operators {e.g. aggre-
gate functions, cross product, and division}, our evaluation eflorts have concentrated on the join opera~
tion. However, at the end of the section, we discuss how our results extend to these other algorithms.
After introducing the notation used in our analysis, we present ap analysis of the {amiliar

sort-merge [BLASTT| join algorithm using this notation. Next we analyze a multipass extension of the

simple hashing algorithm. The third algorithm described is an algorithm that has been proposed by the
Japanese 5th generation project [KITS83|, and is called GRACR. In the first phase, the joir of two large
reiations is reduced to the join of several small sets of tuples. During the second phase, the tuple sets are
joined using a hardware sorter and a sort-merge algorithm. Finally, we present a new algorithm, called
the Hybrid algorithm. This algorithm is similar to the GRACE algorithm 1n that it partitions a join into
a set of smaller joins. However, during the second phase, hashing is used instead of sort merge.

In the following sections we develop cost formulas for each of the four algorithms and report
the tesult of analytic simulations of the four algorithms. Cur resuits indicate that that the Hybrid algo

ritbm is preferable to all others over a large range of parameter values.

3.2. Notation and Assumptions

Let R and S be the two relations to be joined. The number of pages in these two relations is
denoted |R| and |S|, respectively. The number of tuples in R and S are represented by ||R|| and |[S|{. The
number of pages of main memory available to perform the join operation is denoted as [M|. Given |M|
pages of main memory, {M}g, {M}s specify the number of tuples from R and S that can fit in main
memory at one time.

We have used the following parameters to characterize the performance of the computer sys-

tem used:
comp time to compare keys
hash time to hash a key
move time to move a tuple
swap time to swap two tuples
1044 time to perform a sequential 1O operation

I0g4np time to execute a random 10 operation

To stmplify our analysis we have made a number of assumptions. First, we have assumed that
JR|<|S}. Next, several quantities need to be incremented by slight amounts to be accurate. For
example, a hash table or a sort structure to hold R requires somewhat more pages than |R|, and finding a
key value 1o a hash table requires, oo the average, somewhat more than oae probe. We use "F” to denote
any and all of these increments, so for example 3 hash table to hold R will require |[R|*F pages. To sim-

plify cost calculations, we have assumed no overlap of CPU and IO processing. We have also ignored the

cost of reading the relations initially and the cost of writing the result of the join to disk since these costs
are the same for each algorithm.

In any sorting or hashing algorithm, the implementor must make a decision as to whether the
sort structure or hash table will contain entire tuples or only Tuple IDs {TIDs) and perhaps keys. If only
TIDs or TID-key pairs are used, there is a significant space savings since fewer bytes need to be manipu-
lated. On the other band, every time a pair of joined tuples is output, the original tuples must be
retrieved. Since these tuples will most likely reside on disk, the cost of the random accesses to retrieve
the tuples can exceed the savings of using TIDs if the join produces a large number of tuples. For-
tunately. we can avoid making a choice as the decision affects our algorithms only in the values assigned
to certain parameters. For example, if only TID-key pairs are used then the parameter measuring the
time for a move will be smaller than if entire tuples are manipulated.

Three algorithms (Sort-merge, GRACE, and Hybrid hash) are much easier to describe if thev
require at most two passes. Hence we assume the necessary condition S| #F <|M|. For example, il F
= 1.2 then |[M| is only 1,000 pages (4 megabytes at 4K bytes/page), and |S| (and [R{, since |R | <[S5})

can be as large as 800,000 pages (3.2 gigabytes)!

3.3. Partitioning a Relation by Hash Values

If IM| < [R|*F, each of the hashing algorithms described in this paper requires that R and/or
S be partitioned into distinct subsets such that any two tuples which hash to the same value lie in the
same subset. One such partitioning is into the sets &, such that R, contains those tuples r for which h{r}
= x. We call such a partition compatible with h.

A general way to create a partition of R compatible with h is to partition the set of hash
values X that h can assume into subsets, say X,...X,. Then, fori = 1, .0 define R, to be all tuples ¢
such that b(r) is in ;. [n fact, every partition of R compatible with h can be derived in this general way,
beginniog with a partition of the hash values. The power of this method is that if we partition both R and
S using the same b and the same partition of hash values, say into R,,....R, and S,,...,5,, then the prob-
lem of joining R and S is reduced to the task of joining R, with §,, R, with S, etc. [BABB79,

GOODS1|

In order for the hash table of each set of R tuples to fit in memory, | R, | *F must be < | M |.
This is not easily guaranteed. For example, how can one choose a partition of R, compatible with h, into
two sets of equal size? Ope might try trial and error: Begin by partitioning the set of hash values into
two sets X, and X, of equal size and then coasider the sizes of the two corresponding sets of tuples R,
and R,. If the R-sets are not of equal size then one changes the X sets to compensate, check the new R-
sets again. etc. Despite the apparent difficulties of selecting the sets X}, X, ..., there are two mitigatiog
circumstances. Suppose that the key distribution has a bounded deansity and that the hash function
eflectively randomizes the keys. If the number of keys in each partition is large, then the central limit
theorem assures us that the relative variation in the number of keys (and hence the number of tuples) in
each partition will be small. Furthermore, if we err slightly we can always apply the bybrid hash join

recursively, thereby adding an extra pass for the overflow tuples.

3.4. Sort-Merge Join Algorithm

The standard sort-merge algorithm begins by producing sorted ruas of tuples which are on the
average twice as long as the number of tuples that can fit into a priority quete in memory [KNUTT3|.
This requires one pass over each relaticn. During the second phase, the runs are merged using an n-way
merge, where n is as large as possible (since only one output page is needed for each run, n can be equal
to [M|-1). If o is less t~an the number of runs produced by the first phase, more than two phases will be
needed. Our assumptions guarantee that oaly two phases are needed.

The steps of the sort-merge join algorithm are:
(1) Scan S and produce output rupns using a selection tree or some other priority queue structure. Do the

o
same for R. A typical run will be approximately —"——l—W-L pages long [KNUT73]. Since the runs of

F
22|) #f .
R bave an average leagth of ——J[T,LL pages, there are "I—flj% such rums. Similarly, there are
- ‘5| &7 runs of S. Since S is the larger relation, the total number of runs is at most lliltl_;li

Therefore, all the runs can be merged at once if | M| EJTS—A]I-F-, or | M|2V[S]#, and we bave

assumed [M| to be at least V| S| #F pages. Thus all runs can be merged at once.

N
b 9
! (2) Allocate one page of memory for buffer ipace for each rua of R and S. Merge runs from R and S

concurrently. When a tuple from R matches one from S, output the pair.

The cost of this algorithm (ignoring the cost of reading the relations initially and the cost of writing the

result of the join) is:

M M
(l|R||logg——{ F}R + ||S lllogz—-{ F}s) * (comp+ swap) Insert tuples into priority queue
to form initial runs
+ (|R|+|5])"0sxq write initial runs
+ (|R|+|S])"Oranp Reread initial runs

[R

+ (||R|‘l°szm!}—’lu/7

+ ||5 ||iog2 (comp+ swap) Insert tuples into priority queue

4s)
{M}s/F
for final merge

+ (BRI+1IS1}) * comp Join results of final merge.
This cost formula holds only if a tuple from R does not join with more than a page of tuples from S.

3.5. Simple-Hash Join Algorithm

If a hash table containing all of R fits into memory, ie. if |R|#F < |M|, the simple-hash
join algorithm proceeds as follows: build a hash table for R in memory and then scan S, hashing each
tuple of S and checking for a match with R (to obtain reasonable performance the hash table for R should
coatain at least TID-key pairs). If the hash table for R will not fit in memory, the simple-hash join algo-
ritbm fills memory with a hash table for part of R, then scans S against that hash table, then it continues
with another part of R, scans the remainder of S again, etc.

The steps of ihe simple-hash join algorithm are:

(1) Let P = mio(]M|, [R|*F). Choose 2 hash function b and a range of hash values so that _ll; pages of

R-tuples will hash into that range. Scan the (smaller) relation R and consider each tuple. If the
tuple hashes into the chosen range, insert the tuple into a P-page hash table in memory. Otherwise,
write the tuple into a new file on disk.

{2) Scan the larger relation S and coasider each tuple. If the tuple hashes into the chosen range. check
the hash table of R-tuples in memory for a match and output the pair if a match occurs. Otherwise.
write the tuple to disk. Note that if key values of the two relations are distributed similarly, there

will be ;t pages of the larger relation S processed in this pass.

s
[R]

e

10

(3] Repeat steps (1) and (2), replacing each of the relations R and S by the set of tuples from R and S
that were "passed over” and written to disk in the previous pass. The algorithm ends when no
tuples from R are passed aover.

The algorithm requires -LIRTMJl‘—Fl passes to execute. We denote this quantity by A. Also note that on

the ith pass, i = 1, ..., A-L {|R]] - ¢ # (M} tuples of R are passed over. The cost of the algorithm is:
|IR|| * (hash + move) Place each tuple of R in a hash table
+ ||S|| * (bash + compsF) Check a tuple of S for a match.
+((A-1)#||R]| - .A_";_'l)_ * Lh_g_”_) * (hash+ move) Hash and move passed-over tuples in R.
+((A-1)#||5|} - dl—';‘l—)- . {—&!}F—';—) * (hash+ move) Hash and move passed-over tuples in S.
+{(A-1)*[R] - .A_'%__ll * M’F_L) * 2¢[0gpq Write and read passed-over tuples in R.

+((A-1)*]| 5] - i"(%'ll * -Il;-]- * ‘||_;;J|_) *# 2 # [Os5q Write and read passed-over tuples in S

3.6. GRACE-Hash Join Algorithm

As outlined in [KITS83], the GRACE-hash join algorithm executes as two phases. The first
phase begins by choosing an h and partitioning the set of hash values for h into |M| sets, corresponding to
a partition of R and S into |M] sets each, such that R is partitioned into sets of approximately equal size.
No assumptions are made about set sizes in the partition of S. The aigorithm uses one page of main
memory as an output buffer for each of the [M| sets in the partition of R and S. During the second phase
of the algorithm, the join is performed using a hardware sorter to execute a sort-merge algorithm on each
pair of sets in the partition. To provide a fair comparison between the different algorithms, we have used

hashing to perform the join during the second phase. The algorithm proceeds as follows:

(1) Scan R. Using b, hash each tuple and place in the appropriate output buffer. When an output
bufer fills, it is written to disk. After R has been completely scanned, flush all output buffers to
disk.

(2} Scan S. Using h, hash each tuple and place in the appropriate output buffer. When an output
buffer flls, it is written to disk. After S has been completely scanned, flush all output buffers to
disk.

11

Steps (3) and (4) below are repeated for each set R, 1<i<|M]|, in the partition for R. and its
corresponding set S,.

(3) Read R, into memory and build a hash table for it.

We pause to check that a hash table for R, can fit in memory. Assuming that all the sets R, are of
equal size, since there are |M| of them, |R,| will equal -l—j-
R} #F < | M) is equivalent to VTR #F < | M|, and we have assumed that V]S ¢F < | M|

pages. The inequality

{4) Hasb each tuple of S, with the same hash fuaction used to build the hash table in (3). Probe for a
match. If there is one, output the result tuple, otherwise proceed with then next tuple of S,

The cost of this algorithm is:

(IR} + !iS|]) * (hash + move) Hash tuple and move to output buffer

+(IR| + [S|) * 10psnp Write partitioned relations to disk
+ (R} + |S]) * 10z Read partitioned sets

+ ||R[| * (hash + move) Build hash tables in memory
+1|S|} * (hash + comps*F) Probe for a match

3.7. Hybrid-Hash Join Algorithm

In our hybrid-hash algorithm, we use the large main memory to minimize disk traflic. On the
first pass, instead of using all of memory as a buffer as is done in the GRACE algorithm, only as many
pages (B. defined below) as are necessary to partition R into sets that can fit in memory are used. The

rest of memory is used for a hash table that is processed at the same time that R and S are being parti-

tioned.
Let B = maz(0, R: :f,:‘l'w). There will be B+ 1 steps in the hybrid-hash algorithm.
First, choose a hash function h and partition R into R, - - .Rg, such that a hash table for R, has

| M| -B pages, and R,....,Rp are of equal size.
Before describing the algorithm we first show that a hash table for R, will fit into memory.
Assuming that all sets R, are of equal size, we denote |R,| by p. We nust show that:
pF <M {a)

Since R is chosen so that a hash table for it fits into | M | -B pages of memory, we have:

12

|Ro| *#F=|M|-B (b)
Since the sum of all the R,-sets is R, we have
|R|=B%%+ | Ryl ()

If a hash table for all of R fits into memory, we can choose B = 0 and be done with it. So henceforth we

assume | M| <|R | ¢F. Thus, B-M. If we solve (c) for p and substitute {b} in the resuit

IM1-1
we get:
|R] IRl _ |R| |M|-B
*="fF 85 ~ "8 FB Y
Now we multiply (d} by F and simplify to get:
prF = R 'g' M +1 (e)

Finally, we substitute for B in (e) to get (a), which was our goal. Thus we have demonstrated that a hash
table for R, fits into memory.

Now we continue with the algorithm. Allocate B pages of memory to output buffer space, and
assign the other | M | -B pages of memory to a hash table for Ry. We pause again to check that there ate
enough pages in memory to hold the output buffers, i.e. that B |M|. If we substitute for B in the ine-
quality B<|M| and simplify, we get VTR | *F <|M|, which is true since we have assumed that that
VIST*F <iM|.

The steps of the hybrid-hash algorithm are:

(1) Assign the ith output buffer page to R, fori=1,..B. Scan R. Hash each tuple with h. If it
belongs to Ry, place it in memory in the hash table for Ry Otherwise it beloags to R, for some
1>0. so move it to the ith output bufler page. When this step has finished, we have a hash table for
R, m memoty, and R,,....Rg are on disk. The partition of R corresponds to a partition of § compa-
tible with b, into sets S,...,Sp.

(2} Assign the ith output bufler page to S, for v =/,...,B. Scan S, hashing each tuple with h. If the
tuple is io S, probe the hash table in memory for a match. If there is a match, output the the
result tuple. If there is no match, toss the tuple. Otherwise, the hashed tuple belongs to S, for some
1>0, so move it to the ith output buffer page. Now R,,...,Rp and S,,...,5p are on disk.

Repeat steps (3) and (4) for i = 1,...,B.

{3) Read R, and build a hash table for it in memory. We have already shown that a hash table for it
will it in memory.

13

(4) Scan S,, hashing each tuple, and probing the hash table for R,, which is in memory. If there is a
match, output the result tuple, otherwise toss the S tuple.

Rl

RT namely the fraction of R represented by R,.

For the cost computation, denote by q the quotient

To calculate the cost of this join we need to know the size of S;, and we estimate it to be q*{S|. Then the

fraction of R and S sets remaining on the disk is 1.q. The cost of the hybrid-hash join is:

{lIR]] +]IS||)*hash Partition R and S

+(/IR]]+ lISI})*(1-q)smove Move tuples to output buffers

+(|R]+ [S])*(1-q)*10ganp Write from output buffers

+(|IR]|+ [IS)*(1-q)*hash Build hash tables for R and find where to probe for S
+ [{S{[*F *comp _ Probe for each tuple of S

+ ||R[|*move Move tuples to hash tables for R

+ ([R]+ |S)*(1-q)*/Oggq Read sets into memory

3.8. Comparison of the 4 Join Algorithms

In Figure 1 we have displayed the relative performance of the four join algorithms. The verti-

cal axis is execution time in seconds. The horizontal axis is the ratio of Note that above a ratio

Ml
|R | #F"
of 1.0 all algorithms bave the same execution time as at 1.0, except that sort-merge will improve to

approximately 900 seconds, since fewer 10 operations are needed. The parameter settings used are shown

in Table 2. We have assumed that there are at least /] S| ## pages in memory. For the values specified

in Table 2, this corresponds to = 0.009.

M|
R |
In generating these graphs we have used the cost formulas given above with one exception.

The [Ogsnp term used in the cost formula for hybrid hash should be replaced by [Oggq in the case that
there is only one output buffer. There is only one output bufler whenever lMlZ-'ia—;)l'—F (0.5 on the
horizontal axis of Figure 1). The abrupt discontinuity in the performauce of the hybrid hash algorithm at

0.5 occurs because when memory space decreases slightly, changing the aumber of output buffers from one

to two, the IO time is suddenly calculated as a muitiple of [Og,np instead of /Osgq. Even when there

14

Table 2 — Parameter Settings Used

comp time to compare keys 3 microseconds
hash time to hash a key 9 microseconds
move time to move a tuple 20 microseconds
swap time to swap two tuples 60 microseconds
10sgq sequential JO operation time 10 milliseconds
IOpunp random O operation time 25 milliseconds
universal "fudge” factor 1.2
ISl size of S relation 10,000 pages
IR| size of R relation 10,000 pages
JIRl}/IR] oumber of R tuples/page 40
[ISII/IS| number of S tuples/page 40

are only two ot three buffers, 10g4np is probably too large a figure to use to measure [O cost, but we
have not made that change. This is what causes our graphs to indicate that simple hash will outperform
hybrid bash in a small region; in practice hybrid hash will probably always outperform simple hash.

We have generated similar graphs for the range of parameter values shown in Table 3. For
each of these values we observed the same qualitative shape and refative positioning of the different algo-
rithms as shown in Figure 1. Thus aur coaclusions do not appear to depend on the particular parameter

values that we have chosen.

3.9. Algorithms for Other Relational Operations
While we have not analyzed algorithms for the remaining relational operations such as aggre-
gate function and projection with duplication elimination, we can offer the following observations. For

aggregate functions in which related tuples must be grouped together (compute average employee salary

Table 3 ~ Other Parameter Settings Tested

comp 1 to 10 microseconds
hash 2 to 50 microseconds
move 10 to 50 microseconds
swap 20 to 250 microsecouds

10ggq 5 to 10 milliseconds
10ganp 15 0 35 millisecond.
F

1.0to 1.4
IS{ 10,000 to 200,000 pages
IIR{ 100,000 to 1,000,000 tuples

XBCUTION TIME IN SECONDS

4000

2300

1500

1000

SORT-MERGE

GRACE-HASH

PERFORMANCE OF THE 4 JOIN ALGORITHMS

Figure 1

15

by manager), the result relation will contain one tuple per group. If there is enough memory to hold the
result relation, then the fastest algorithm will be a one pass hashing algorithm in which each incoming
tuple is hashed on the grouping attribute. If there is not enough memory to hold the result relation (prob-
ably a very unplikely event as who would ever want to read even a 4 million byte report} then a variaat of
the hybrid-hash algorithm described for the join operator appears [astest. This same hybrid-hash algo-
rithm appears to be the algorithm of chnice for the projection operator as projection with duplicate elimi-
nation is very similar in nature to the aggregate function operation (in projection we are grouping identi-
cal tuples while in an aggregate function operation we are grouping tuples with an identical partitioning

attribute}.

4. Access Planning and Query Optimizsation

In the classic paper on access path selection by Selinger [SELIT9), techniques are developed by
choosing the "best” processing strategy for a query. “Best” is defined to be the plan that minimizes the
function Ws|CPU| + [I/O| where |[CPU[is the amount of CPU time consumed by a plan, {[/Of is the
oumber of IfO operations required for a plan, and W is a weighting factor between CPU and 1/O
resources. Choosing a "best” plan involves enumerating all possible "interesting” orderings of the opera-
tors in query, all alternative algorithms for each operator, and all alternative access paths. The process is
complicated by the fact the order in which tuples are produced by an operator can have a significant
effect on the execution time of the subsequent operator in the query tree.

The analysis presented in Section 3 indicates that algorithms based on hashing {the hybrid-
hash algorithm in the case of the join operator and the simple-hash algorithm to process projection and
aggregate function operators) are the fastest algorithms when a large amount of primary memory is avail-
able. Since the performance of these algorithms is not affected by the input order of the tuples and since
there is only one algorithm to choose from, query optimization is reduced to simply ordering the operators

so that the most selective operations are pushed towards the bottom of the query tree.

18

§. Recovery in Large Memory Databases

5.1. Introduction and Assumptions

High transaction processing rates can be obtained on a processor with a large amount of main
memory, since input/output delays can be significantly reduced by keeping the database resident in
memory. For example, if the entire database is resident in memory, a transaction would never need to
access data pages on disk.

However, keeping a large portion of the database in volatile memory presents some unique
challenges to the recovery subsystem. The in-memory version of the database may differ significantly
from its latest spapshot on disk. A simple recovery scheme would proceed by first reloading the snapshot
on disk. and then applying the transaction log to bring it up to date. Unless the recovery system does
mors than simple logging during normal transaction processing, recovery times would become intolerably
loog using this approach.

Throughout this section, we will assume that the entire database fits in main memory. {n such
an environment, we need oaly be concerned with log writes. A "typical” transaction writes 400 bytes of
log data {40 bytes for transaction begin/end, 360 bytes for old values/new values),? which takes 10 ms
(time to write one 4096 byte page without a disk seek). We also assume that a small portion of memory

can be made stable by providing it with a back-up battery power supply.

§5.2. Limits to Transaction Throughput

In conventional logging schemes, a transaction canpot commit until its log commit record has
been written to stable storage. Most transactions have very simple application logic, and perform three to
four page reads and writes. While transactions no longer need to read or write data pages if the database
is memory resident. they still need to perform at least one log I/O. Assuming a single log device, the sys-
tem could commit at most 100 transactions per second (1 seconad / 10 ms per commit = 100 committed
transactions per second). The time to write the log becomes the major bottleneck.

A scheme that amortizes this log I/O across several transactions is based on the notion of a

 These are ballpark estimates, based ou the example banking database and transactions iu Jim Gray, *Notes on Database
Operating Systems.” |BM RJ2188(30001), {February 23, 1078)

17

pre-commitied transaction. When a transaction is ready to complete, the transaction management system
places its commit record in the log buffer. The transaction releases all locks without wailing for the com-
mit record to be written to disk. The transaction is delayed from committing until its commit record actu-
ally appears on disk. The "user” is not notified that the transaction has committed uatil this event has
occurred.’

By releasing its locks before it commits, other transactions can read the pre-committed
transaction's dirty data. Call these dependent transactions. Reading uncommitted data in this way does
pot lead to an inconsistent state as long as the pre-committed transaction actually commits before its
dependent transactions. A pre-committed transaction does not commit only if the system crashes, never
because of a user or system induced abort. As long as records are sequentially added to the log, and the
pages of the log buffer are written to disk in sequence, a pre-committed transaction will have its commit
record on disk before its dependent transactions.

The transactions with commit records on the same log page are committed as a group, and are
called the commit group. A single log 1/O is incurred to commit all transactions within the group. The
size of a commit group depeads on how many transactions can fit their logs within 2 umt of log write (i.e.,
a log buffer page). Assuming the "typical” trapsaction, we could have up to ten transactions per commit
group. The transaction throughput can be increased by another order of magnitude, to 1000 transactions
per second (1 second / 10 ma to commit 10 transactions = 1000 transactions committed per second).

The throughput can be further increased by writing more than ‘one log page at a time, by par-
titioning the log across several devices. Since more than one log I/O can be active simultaneously, the
recovery system must maintain a topological ordering among the log pages, so the commit record of a
dependent transaction is ot written to disk before the commit record of its associated pre-committed
transaction. The roots of the topological lattice can be written to disk simultaneously.

To maintain the ordering, and thus the serialization of the transactions, the lock table of the
concurrency control component must be extended. Associated with each lock are three sets of transac-

tions: active transactions that currently hold the lock, transactions that are waiting to be graoted the

3 The notion of groap commits appear to be part of the unwntten database folklore The System-R 1mplementor claim to
bave impiemented it To our knowledge, neither the idea nor the implementation detasls has yet appeared 1o print

18

lock, and pre-committed transactions that have released the lock but have not yet committed. When a
transaction is granted a lock, it becomes dependent on the pre-committed transactions that formerly held
the lock. The dependency list is maintained in the transaction's descriptor in the active transaction table.
When a transaction becomes pre-committed, it moves from the bolding list to the pre-committed list for
all of its locks (we assume all locks are held until precommit), and the committed transactions in its
dependency list are removed. In becoming pre-committed, the transaction joins a commit group. The
commit groups of the remaining transactions in its dependency list are added to those on which its com-
mijt group depends. A commit group cannot be written to disk, and thus commit, until all the groups it
depends op have previously been committed.

For recovery processing, a single log is recreated by merging the log fragments, as in a sort-
merge. For example, to roll backwards through the log, the most recent log page in each fragmeant is
examined. The page with the most recent timestamp is processed first, it is replaced by the mext page in
that fragment, and the most receat log page of the group is again determined. By a careful bufering stra-

tegy. the reading of log pages from different fragments can be overlapped, thus reducing recovery time.

5.3. Checkpolnting the Database

An approach for reducing recovery time is to periodically checkpoint the database to stable
storage [GRAY81|. Checkpointing limits recovery activities to those transactions that are active at the
checkpoint or who have begun since the last checkpoirt. System-R, for example, takes an action con-
sistent checkpoint, during which po storage system operations may be in progress (a transaction consists
of several such actions, which correspond roughly to logical reads and writes of the database). Dirty
bufler pool pages are forced to disk. Since the database is assumed to be large, a large number of dirty
pages will need to be written to disk, making the database unavailable for an intolerably long amount of
time. Consider the case of 1000 transactions per second, two dirty pages per transaction. and 30 seconds
between checkpoints. In the worst case, 60,000 pages would need to be written at the checkpoint!

We would like to overlap checkpoint with transaction activity. Let A,,,, be the set of pages
that have been updated since the last checkpoint. Once a checkpoint begins, Lransaction activity can con-

tinue if updates to pages of A, .. C3use new in-memory versions to be created, leaviag the old versions

—_—

19

available to be written to disk. A checkpointed, action consistent state of the database 15 always maia-
tained on disk. At a checkpoint, a portion of the state is replaced by A,,.. To guarantee that the state
is updated "carefully,” we use a batch update approach by first writing these pages to stable storage. We
denote the batch update file by A,,,,. If the system crashes while the disk state is being overwritten from
memory, it can be reconstructed from the pages in A ,,;.

The algorithm proceeds in two phases. In phase 1, A, is written to A,,. During phase 2,
the pages in A,,, are copied to their original locations on disk. For the algorithm to work. we must
assume:

(1) Extra disk space is availabie to hold A 4.

(2) Extra memory space is available to hold Ay .

{3} No dirty page is ever written to disk except during a checkpoint.

Time stamps are used to determine membership in A,,,.. The timestamp T, indicates when
the current checkpoint began, or is zero if no checkpoint is in progress. When a transaction attempts to
update a page, the page’s timestamp T, is compared to T,,. If T,,, < T, and the page is dirty. a
new version of the page is created and the in-core page table points to the new page. The update is
applied to the new page. The page's timestamp is updated to reflect the latest modification.

To obtain an action coasistent state for the checkpoint, the system is initially quiesced. T, is
set to the current time clock to indicate that a checkpoint has begun. The active transaction list is con-
structed for later inclusion in the log. Transaction activity can now resume, since the old versions in
Aa:m can oo longer be updated. Memory pages who are dirty and for which T, < T., are wnitten to
A After Ay, has been created. a begin checkpoint record is written to the log with T, and the list of
active transactions, indicating that phase 1 of checkpoint is complete. The pages of A_ . are then writ-
ten to their original locations oo disk. making the disk state identical to the in-memory state as of T,
Ap end checkpoint record is written to the log to indicate the completion of phase 2, &, , is removed, and
T, is reset.

The advantage of the algorithm is that checkpointing can +. done in parallel with transacticn

activity while maintaining an action consistent state on disk. This is particularly needed in a high update

20

transaction environment, which can generate a large number of updated pages between ~heckpoints
Further, as soon as a checkpuint completes, another can commence with ogly a negligible interruption of
service. Checkpownting proceeds at the maximum rate possible, i.e., as fast as pages can be wnitten to

disk. thus keeping the log processing time to a mimimum during recovery.

§5.4. Relucing Log Sise

While checkpointing will reduce the time to process the log, by reducing the necessary redo
activity 1t does not help reduce the log size. The large amount of real memory available to us cac be
used to reduce the log size, if we assume that a portios of memory can be made stable against system
power failures. For example, batteries can be used as a back-up power supply for low power CMOS
memory chips. We further assume that such memory is too expensive to be used for all of real memory

Partition real memory into a stable portion and a conventional, non-stable portion. The stable
portion will be used to hold an in-memory log, which can be viewed as a reliable disk ouiput queue for log
data. Transactions commit as soon as thev wnte their commit records into the in-memory log. Log data
1s wntten to disk as soon as a log buffer page fills up. Given the buffering of the log in memory. it may be
more efficient to write the log a track at a time. I[n addition. multiple log writes can be directed to
different log devices without the need for the bookkeeping described above. However. in the steady state.
the aumber of transactions processed per second is still limited by how fast we can empty buffer pages bv
writing them to disk-based stable storage.

Stable memory does not seem to gain much over the group commit mechasism. However. the
log can be sigmficantly compressed while it is buffered in stable memory. The log entries for 1 particular

transactioa are of the form

Begin Transaction
<Old Value, New Value>

<Old Value, New Value>
End Transaction

A transaction’s space 1n the log can be significantly reduced if only new values are written to the disk

based log (approximately halfl of the size of the log stores the old values of modified data — this is only

needed if the transaction must be undone). This is advantageous for space management, and also reduces

e "y v /7

21

the recovery time by shortening the log.

In the conventional approach, log entries for all transactions are intermiyed ip the log. The
log manager maintains a list of committed traasactions, and removes their old value entries from log
pages before wniting them to disk. A transaction i» removed from the list as soon as its commit record
has been wriiten to disk. A more space efficient alternative is to maintamn the log on a per transaction
basis in the stable memory. If enough space can be set aside to accommodate the logs of all active tran-
sactions, then only new values of committed transactions are ever written to disk.

Stable memory also assists in reducing the recovery time. To recover committed updates to
pages since the last checkpoint, the recovery system needs to find the fog entry of the oldest update that
refers to ap uncheckpcinted page. A table can be placed in stable memory to record which pages have
bees updated since their last checkpoint, and the log record id of the first operation that updated the
page. When a page is checkpointed to disk, its update status is reset. The log record id of the next
update on the page is entered into the table. The oldest entry in the table determines the point in the log

from which recovery should commence.

8. Conclusions and Future Research

In this paper we have examined changes to the organization of relational database manage-
ment systems to permit effective utilization of very large main memories. We have shown that the B+ -
tree access method will remain the preferred access method for keved arcess to tuples ip a relation unless
more thar B0 - 90°¢ of the database can be kept in main memory. We have also evaluated alternative
algorithms for complex relational operators. We have shown that once the size of main memory exceeds
the square root of the size of the relations being processed, that the fastest algorithms for the join, projec-
tion, and aggregate operators are based on a hashing. [t is interesting to note that this result also holds
for "small” main memories and “small” databases. Finally, we have discussed recovery techniques for
mermory-resident databases.

There appear to be a number of promising areas for future research. These include buffer
management strategies (how to efficiently manage very large buffer pools), the eflect of virtual memory on

query processing 2lgorithms, and concurrency control. While locking is generally accepted to the algo-

rithm of choice for disk resident databases. a versivning mechanism {REEDS3| may provide superior per-

formance for memory resideat systems.

23

7. References
|BABB79| Babb, E. "Implementing a Relational Database by Means of Specialized Hardware,” ACM
TODS, Vol. 4, No. 1, March 1979.

|BLAS77] Blasgen, M.W. and K.P. Eswaran, "Storage and Access in Relational Databases,” IBM Systems
Journal, Vol. 16, No. 4, 1977.

|CESA82] Cesarini, F. and G. Soda, "Binary Trees Paging”, Information Systems, Vol. 7, No. 4, pp 337-
344, 1982.

|{COMET79| Comer, D., "The Ubiquitous B-tree,” ACM Computing Surveys, Vol. 11, No. 2, june 1079.

|DATES2] Date, C.J., "An Introduction to Database Systems,” Third Edition, Addison-Waesley, 1982.

{GOODS1| Goodman, J. R., "An Investigation of Multiprocessor Structures and Algorithms for Data Base
Management,” Electrogics Research Laboratory Memorandum No. UCB/ERL M81/33, University of
California, Berkeley, May 1981.

[GRAYS81| Gray, J., et. al., "The Recovery Manager of the System R Database Manager,” ACM Comput-
ing Surveys, Vol. 13, No. 2, June 1981.

[KNUT73] Knuth, D., "The Art of Computer Programming: Sorting and Searching,” Volume IiI,
Addison-Wesley, Reading, MA, 1973.

[KITS83| Kitsuregawa, M. et al, "Application of Hash to Data Base Machine and its Architecture”, New
Geaeration Computing, No. 1, 1983, 62.74.

[MUNT70] Muatz, R. and R. Uzgalis, "Dynamic Storage Allocation for Bipary Search Trees in 3 Two-
Level Memory,” Proceedings of the Princeton Conference oa Information Sciences and Systems. No.
4, pp. 345-349, 1970.

jREEDS3] Reed, D., "Implementing Atomic Actions on Decentralized Data,” ACM Transactions on Com-
puter Systems, V 1, N 1, (March 1983).

{SELI79| Selinger, P.G., et. al., "Access Path Selection in a Relational DBMS," Proceedings of the 1979
SIGMOD Conference on the Management of Data, June 1979.

[YAOT8| Yao, S. B., and D. DeJong, "Evaluation of Database Access Paths,” Proceedings of the 1978
SIGMOD Conference on the Management of Data, May 1978,

